In early work we synthesised and resolved planar chiral (R)- and (S)-PHANOLs1 for their use as double hydrogen bonding organocatalysts to activate carbonyl and epoxide groups.2,3

As a counterpoint to our natural product work we also developed new organocatalysts for bromination,4,5 including ortho-substituted iodobenzenes.This ultimately led to the off-the-shelf use of the Sharpless ligand with carboxylic acid additives for catalytic asymmetric bromolactonisations.7

As a separate area, we have been involved with olefin metathesis chemistry using Grubbs ruthenium based catalysts. In early work, the ability of ruthenium benzylidenes and palladium(0) catalysts to function as orthogonal catalysts was explored.8,9 in 2006, we reported on facile anionic ligand exchange in Hoveyda-Grubs ruthenium benzylidenes,10 and subsequently utilized these observations for a vacuum driven immobilisation of Buchmeister-Hoveyda-Grubbs ruthenium benzylidenes.11  In 2017 we reported that kinetic benchmarking reveals the competence of prenyl groups in ring-closing metathesis.12

In collaborative work with Dr Rob Davies, we have been been exploring copper catalyzed Ullmann reactions.  In 2015, we reported on the synthesis and reactivity of copper(I) amide complexes.13 Subsequently, we have reported mechanistic studies on the copper catalyzed N-arylations of alkyl amines promoted by organic soluble bases,14 mechanistic and performance studies on the ligand-promoted Ullmann amination reaction,15 and new insights into the reaction capabilities of ionic bases in copper-catalysed aminations.16

Olefin metathesis and copper catalyzed methods continue to be active areas of research in the group.

References: [1] Braddock D. C.; MacGilp, I.; Perry, B. G. J. Org. Chem. 200267, 8679-8681. [2] Braddock, D. C.; MacGilp, I. D.; Perry, B. G. Synlett 2003, 1121-1124. [3] Braddock, D. C.; MacGilp, I. D.; Perry, B. G. Adv. Synth. Catal. 2004326, 1117-1130. [4] Ahmad, S. M.; Braddock, D. C.; Cansell, G.; Hermitage, S. A. Tetrahedron Lett. 200748, 915-918. [5] Ahmad, S. M.; Braddock, D. C.; Cansell, G.; Hermitage, S. A.; Redmond, J. M.; White, A. J. P. Tetrahedron Lett. 200748, 5948-5952. [6] Braddock, D. C.; Cansell, G. Hermitage, S. A. Chem. Commun. 2006, 2483-2485. [7] Armstrong, A.; Braddock, D. C.; Jones, A. X.; Clark, S. Tetrahedron Lett. 201354, 7004-7008. [8] Braddock, D. C.; Wildsmith A. J. Tetrahedron Lett. 200142, 3239-3242. [9] Braddock, D. C.; Matsuno, A. Tetrahedron Lett. 200243, 3305-3308. [10] Tanaka, K.; Bohm, V. P. W.; Chadwick, D.; Roeper, M.; Braddock, D. C. Organometallics 200625, 5696-5698. [11] Braddock, D. C.; Tanaka, K.; Chadwick, D.; Bohm, V. P. W.; Roeper, M. Tetrahedron Lett. 200748, 5301-5303. [12] Bahou, K. A.; Braddock, D. C.; Meyer, A. G.; Savage, G. P. Org. Lett. 201719, 5332–5335. [13] Sung, S.; Braddock, D. C.; Armstrong, A.; Brennan, C.; Sale, D.; White, A. J. P.; Davies, R. P. Chem. Eur J. 201521, 7179-7192. [14] Sung, S.; Sale, D.; Braddock, D. C.; Armstrong, A.; Brennan, C.; Davies, R. P. ACS Catal. 20166, 3965–3974. [15] Lo, Q. A.; Sale, D.; Braddock, D. C.; Davies, R. P. ACS Catal. 20188, 101-109. [16] Lo, Q. A.; Sale, D.; Braddock, D. C.; Davies, R. P. Eur. J. Org. Chem.  2019, most recent.